Effect of severe normocapnic hypoxia on renal function in growth-restricted newborn piglets.
نویسندگان
چکیده
To examine the effects of intrauterine growth restriction and acute severe oxygen deprivation on renal blood flow (RBF), renovascular resistance (RVR), and renal excretory functions in newborns, studies were conducted on 1-day-old anesthetized piglets divided into groups of normal weight (NW, n = 14) and intrauterine growth-restricted (IUGR, n = 14) animals. Physiological parameters, RBF, RVR, and urinary flow, were similar in NW and IUGR piglets, but glomerular filtration rate (GFR) and filtration fraction were significantly less in IUGR animals (P < 0.05). An induced 1-h severe hypoxia (arterial PO(2) = 19 +/- 4 mmHg) resulted in, for both groups, a pronounced metabolic acidosis, strongly reduced RBF, and increased fractional sodium excretion (FSE; P < 0.05) with a less-pronounced increase of RVR and arterial catecolamines in IUGR piglets. Of significance was a smaller decrease in RBF for IUGR piglets (P < 0.05). Early recovery showed a transient period of diuresis with increased osmotic clearance and elevated FSE in both groups (P < 0.05). However, GFR and renal O(2) delivery remained reduced in NW piglets (P < 0.05). We conclude that, in newborn IUGR piglets, RBF is maintained, although GFR is compromised. Severe hypoxemia induces similar alterations of renal excretion in newborn piglets. However, the less-pronounced RBF reduction during hypoxemia indicates an improved adaptation of newborn IUGR piglets on periods of severely disturbed oxygenation. Furthermore, newborn piglets reestablish the ability for urine concentration and adequate sodium reabsorption early after reoxygenation so that a sustained acute renal failure was prevented.
منابع مشابه
Hypoxia-Induced Endothelial Damage and Microthrombosis in Myocardial Vessels of Newborn Landrace/Large White Piglets
OBJECTIVE Evaluating the presence of endothelial changes in myocardial vessels in an experimental model of hypoxia and resuscitation in newborn piglets. METHODS Fifty male Landrace/Large White neonatal piglets were studied: ten of them were allocated in group A (control group, SHAM-operated). In group B (forty animals, experimental group) normocapnic hypoxia was induced by decreasing inspired...
متن کاملInfusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets
BACKGROUND The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis. METHODS Newborn piglets were block-randomized int...
متن کاملReoxygenation of Asphyxiated Newborn Piglets: Administration of 100% Oxygen Causes Significantly Higher Apoptosis in Cortical Neurons, as Compared to 21%
OBJECTIVE Evaluation of neuronal changes in an animal experimental model of normocapnic hypoxia- reoxygenation. MATERIALS AND METHODS Fifty male piglets were the study subjects; normocapnic hypoxia was induced in 40 piglets and ten were sham-operated (controls). When bradycardia and/or severe hypotension occurred, reoxygenation was initiated. Animals were allocated in 4 groups according to th...
متن کاملEffects of Post-Resuscitation Treatment with N-acetylcysteine on Cardiac Recovery in Hypoxic Newborn Piglets
AIMS Although N-acetylcysteine (NAC) can decrease reactive oxygen species and improve myocardial recovery after ischemia/hypoxia in various acute animal models, little is known regarding its long-term effect in neonatal subjects. We investigated whether NAC provides prolonged protective effect on hemodynamics and oxidative stress using a surviving swine model of neonatal asphyxia. METHODS AND...
متن کاملQuantification of compensatory processes of postnatal hypoxia in newborn piglets applying short-term nonlinear dynamics analysis
BACKGROUND Newborn mammals suffering from moderate hypoxia during or after birth are able to compensate a transitory lack of oxygen by adapting their vital functions. Exposure to hypoxia leads to an increase in the sympathetic tone causing cardio-respiratory response, peripheral vasoconstriction and vasodilatation in privileged organs like the heart and brain. However, there is only limited inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 279 3 شماره
صفحات -
تاریخ انتشار 2000